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SUMMARY

It is desired that the Nimbus meteorological satellite always
cross the equator around local noon and, half-an-orbit later,
cross the equator in the other direction around local midnight.
The application of the phenomenon of nodal regression toward
this end is discussed, and an analysis of the parameters angles
of inclination, periods, and heights of such "ideal" circular orbits
is presented. Also,the relative motion of the apparent versus the
fictitious mean sun is briefly discussed.
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EARTH OBLATENESS AND RELATIVE SUN MOTION
CONSIDERATIONS IN THE DETERMINATION OF
AN IDEAL ORBIT FOR THE NIMBUS
METEOROLOGICAL SATELLITE

by
William R. Bandeen
Goddard Space Flight Center

INTRODUCTION

The Nimbus meteorological satellite will carry improved television, radiation, and
possibly other types of experiments in a 600 nautical mile circular orbit about the earth
for a nominal instrumental lifetime of six months. Because it will be earth oriented,
Nimbus will rotate exactly once about its pitch axis during each orbit.

For maximum earth coverage, a near-polar orbit is planned. In order to collect data
under conditions of high solar elevation angles in the sunlit portion of the orbit and condi-
tions of maximum diurnal change over the entire orbit, it is desired that the satellite
always cross the equator near local noon and, half-an-orbit later, cross in the other
direction near local midnight. If the orbital nodes did not regress, the relative motion of
the sun would change such a "noon-midnight" orbit into a "sunrise-sunset' orbit (at the
equator) in three months (Figure 1).

However, the phenomenon of nodal regression can be used to advantage by prescribing
an orbit with characteristics such that the line of nodes advances (eastward) in right
ascension (R.A.) along the celestial equator at the same rate as the mean sun, i.e., 0.9856
degrees per day. Under these conditions a noon-midnight orbit would continue indefinitely.
Throughout this paper the term "ideal orbit" will refer to a retrograde circular orbit
whose nodal regression is 0.9856 degrees per day, exactly that of the mean sun's relative
motion.

THEORY OF THE REGRESSION OF THE LINE OF NODES

The earth has the shape of an oblate spheroid with an equatorial diameter some 43
kilometers greater than the polar diameter. Hence, the earth’'s gravitational field is
not a central force field but is distorted by this oblateness. For purposes of illustration
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the satellite orbit can be considered a huge wheel. The gravitational attraction between
the equatorial bulge and the rim of the orbit wheel exerts forces directed outside the orbital
plane which create a torque about the line of nodes, tending to turn the orbital plane into
the earth's equatorial plane. Considering the dynamics of precession, torque is the rate
of change of angular momentum; hence the angular moraentum vector of the orbit (which
is perpendicular to the orbital plane) moves in the dire:tion of the torque vector. How-
ever, after the angular momentum vector moves an infinitesimal distance in the direction
of the line of nodes, this line rotates through an infinitesimal angle, resulting in a conical
motion or precession of the orbital angular momentum vector about a fixed axis — in this
case the earth's axis. Hence, the inclination angle of the orbital plane remains constant
(within the scope of this discussion) but the line of nodes regresses (i.e., it moves around
the equator in a direction opposite to the motion of the satellite in orbit). For a satellite
revolving in orbit in the direction of the earth's rotation, the nodal regression is from
east to west; and for a satellite revolving in orbit against the direction of rotation of the
earth (a retrograde orbit), the nodal regression is from west to east (Figure 1).

EQUATION FOR NODAL REGRESSION

Only circular orbits will be considered here because it can be shown that, with
reasonably good injection guidance, the slightly elliptical departure from a circular orbit
resulting from injection errors is negligible compared to other effects. The equation for
the regression of the nodes of a circular orbit about the earth is

AR 2 /KM
- = -6u (%) lfr—sco: i, (1)

AQ = change in "'absolute longitude™ (R.A.)

where

t = unit of time,

« = constant specifying the quadrupole strength cf the earth's gravitational field
(due to the earth's oblateness),

a = earth's equatorial radius,

r = magnitude of the radius vector from the earth's center to the satellite,
K = gravitational constant,

M = mass of the earth,

i = angle between the equatorial plane and the orbital plane (more specifically, the
angle between the earth's spin vector and the orbital spin vector, e.g., for a
retrograde orbit i > 90°).



Substituting the numerical values

6. = 1.637 x 10-3,
a = 6,378.388 km,
KM = 3.986329 x 105 km3/sec?,

t

1 day = 86,400 sec,

into Equation 1 and multiplying by 57.29578 degrees/radian, we have

. 20.8158 x 1013 .
Q S =T ————— (COs 1, (2)

i~

r

where r is in kilometers and Q is the rate of regression of the orbital nodes in
degrees/day (positive indicates eastward and negative westward motion).

ORBITAL PERIOD

Equating the acceleration due to gravity with the centripetal acceleration of a circular
orbit, we have

KM _ (2_w)2 .. 3)

where P is the nominal period for one orbit. Subsfituting numerical values into Equation
3, we have

3
P - 1.6586 x 10-4r2, (4)

where P is in minutes and r in kilometers.

Equations 2 and 4 were used to calculate the values of i and P for various values of
r of a circular orbit. In Equation 2, O was set at 0.9856 degrees/day, the same as the
rate of advance in the R.A. of the mean sun. In Figure 2 the height of a circular orbit,
H, is r - 6371.2 kilometers, where 6371.2 kilometers is the radius of a spherical earth
having the same volume as the actual earth. The number of orbits per day equals 1440/P.
For example, it is seen in Figure 2 that an ideal circular orbit, having a height above the
surface of the earth of 600 nautical miles (691 statute miles or 1112 kilometers), has an
inclination of 99.89 degrees and a period of 107.4 minutes, and that there are 13.41 orbits
per day.



EFFECT OF INJECTION ERRORS ON NODAL REGRESSION

Differentiating Equation 2, we have

©_ ol tani o7 dr
e = Q[57.2958 di* 33 ] (5)

where di is in degrees. Using Equation 5, the deviation of the line of nodes of a 600
nautical mile circular orbit from the R.A. of the mean sun versus days after launch was
calculated for partial errors in i and H (Figures 3 and 4 respectively).

The 3o errors expected in the Nimbus orbit are +1 degree in i and +40 nautical
miles in H using the Thor-Agena B launch vehicle. From Figure 3 it is seen that with an
injection error of 1.0 degree in i, the deviation after six months is about 18 degrees; and
from Figure 4 it is seen that with an injection error in 4 of 40 nautical miles the devia-
tion after six months is only about 6.2 degrees.

DEVIATION OF THE APPARENT SUN FROM THE MEAN SUN

During the course of a year the earth-sun vector will sweep an arc of about 47
degrees in astronomical declination (earth latitude), rarging from N23-1/2 degrees at
the summer solstice (June 22) to $23-1/2 degrees at the winter solstice (December 22).
Moreover, even though an ideal orbit is achieved whose line of nodes advances at the
rate of 0.9856 degrees per day (the same as the rate of advance in R.A. of the mean sun),
the R.A, of the apparent sun will differ at times from that of the mean sun by more than
4 degrees. These deviations are due mainly to two causes: (1) the variable revolution
of the earth around the sun, owing to the eccentricity of its orbit and (2) the obliquity (or
inclination to the celestial equator by about 23-1/2 degrzes) of the ecliptic. The "equa-
tion of time' in terms of the amount by which the R.A. cf the apparent sun differs from
that of the mean sun, versus calendar date is shown in I'igure 5. It is seen that the two
are the same only four times throughout the entire year. The greatest deviation occurs
shortly after November 1 when the R.A, of the apparent sun is more than 4 degrees be-
hind that of the mean sun.

LOCAL TIME OF SATELLITE PASSAGE
AS A FUNCTION OF LATITUDE

If an ideal orbit is achieved so that the ascending nnde occurs always at local noon,
it is evident from Figure 1 that passage of the satellite at any other latitude will always
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occur at some time other than local noon. By solving the applicable right spherical

triangle we have:
At = 4 arc sin [tan (i - 90°) tan ‘b]’ (6)

where the arc sin and i are in degrees, ¢ is the latitude (+ for north, - for south), and
Atis the number of minutes, local time, by which satellite passage over latitude ¢ differs
from the local time of the ascending node. For example, if for a 600 nautical mile ideal
orbit (i = 99.89 degrees from Figure 2) the ascending node occurs at local high noon,

the local time of passage at 40 degrees north latitude will always be

12:00 - 4arcsin (tan 9.89° tan 40°) = 11:26 a.m. local time,

from Equation 6.

CONCLUDING REMARKS

The brief and simplified application of orbital theory and the associated analyses pre-
sented herein are intended for use in planning the Nimbus program. Terms of higher
order than the second in the earth's gravity potential, and the perturbations caused by
them, were neglected. However, the important criteria for determining the Nimbus orbital
characteristics are included. A more sophisticated approach will, of course, be used in
the final launch program and poséibly in other specialized subsystem investigations.
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Figure 5 — Difference in the R.A, of the apparent sun and tte mean sun, versus calendar date

NASA - Langley Field, Va.









